

Protecting Processors from Software Exploitation

Cyberattacks: RISC-V Sets the Stage for a Streamlined

CoreGuard® Integration

Steven Milburn

CTO and Co-Founder

Dover Microsystems, Inc.

Waltham, MA USA

steve@dovermicrosystems.com

Abstract—Dover Microsystems’ CoreGuard® is the only

solution for embedded systems that prevents the exploitation of

software vulnerabilities and immunizes processors against entire

classes of network-based attacks. It does this by hardwiring

security directly into the silicon, providing a physical layer of

protection that prevents an attacker’s ability to take over the

processor. CoreGuard technology is delivered as IP blocks that

give processor and SoC designers a variety of options for using,

modifying, or extending a RISC-V processor. The “right” option

is based on many factors, such as PPA (Power, Performance, and

Area) constraints and how much flexibility the designer has over

the processor implementation. This paper describes options for

integrating CoreGuard IP with a RISC-V host processor. While

CoreGuard technology is architecture agnostic, the openness and

privilege model of the RISC-V architecture sets a perfect stage for

the most adaptable and streamlined methods of integration.

Keywords—cybersecurity, cyberattacks, embedded systems,

silicon IP, software vulnerabilities, exploits, RISC-V processor

I. INTRODUCTION

Today’s processors blindly execute instructions, and do not
have the knowledge to distinguish between good and bad
behavior. Compounding this issue is the fact that most
cyberattackers exploit bugs in software, and there are on average
15-50 bugs per thousand lines of delivered code [1]. With an
unprecedented approach to cybersecurity, CoreGuard
technology addresses both facets of this problem.

II. HOW COREGUARD TECHNOLOGY WORKS

CoreGuard is silicon IP that integrates with RISC processors
to protect embedded systems from cyberattacks by enforcing
security, safety, and privacy rules—called micropolicies—that
precisely define allowed versus disallowed behavior at the per-
instruction level. CoreGuard maintains micropolicy-relevant
metadata about every word in memory, and then uses this
metadata to crosscheck each instruction processed against the
installed set of micropolicies. If an instruction violates any
micropolicy, CoreGuard Policy Enforcer hardware quarantines
the instruction’s output and sends a micropolicy violation to the
host processor.

Fig. 1. CoreGuard High-Level Architecture

Fig. 1 is a notional representation of the CoreGuard
architecture. Depending on the requirements and constraints of
a design, CoreGuard technology can be instantiated entirely
external to the host processor core, or it can be integrated within
the host processor core logic. Before describing the various
integration options, let’s take a closer look at CoreGuard’s two
main components: micropolicies and the Policy Enforcer.

A. Micropolicies

With an estimated 111 billion lines of new software code
produced each year [2], there is an ever-expanding universe of
vulnerabilities for cyberattackers to exploit. Fortunately, there
are a lot of publicly available and frequently updated data about
specific vulnerabilities and categories of software weaknesses.

Dover uses two broadly-accepted databases maintained by
The MITRE Corporation and sponsored by the U.S. Department
of Homeland Security Cybersecurity and Infrastructure Security
Agency: CVE (Common Vulnerabilities and Exposures) [3] and
CWE (Common Weakness Enumeration) [4].

Informed by these databases, Dover writes targeted
CoreGuard micropolicies to protect against classes of attack that
exploit common categories of software weaknesses [5]. For
example, CoreGuard Heap and Stack micropolicies are designed
to block attacks that exploit buffer overflow vulnerabilities. It

SOFTWAREHARDWARE

Memory Reads

CoreGuard Micropolicies

Policy Violation Handler

Operating System

Application Code & Data

Software

Metadata

Host
Processor Memory

Writes

Micropolicy
Violation

Allowed
Memory
Writes

CoreGuard
Policy Enforcer

Hardware Interlock

Policy Accelerator

Policy Executor

First International Workshop on Secure RISC-V Architecture Design

Exploration (SECRISC-V’20). It is held in conjunction with the IEEE

International Symposium on Performance Analysis of Systems and

Software (ISPASS) - August 23rd, 2020 in Boston, Massachusetts, USA.

doesn’t matter how many new bugs are discovered within a
particular category of weaknesses; micropolicies block the
entire class of attack, whether it is associated with two
vulnerabilities or two million.

Dover writes CoreGuard micropolicies in a domain-specific
language, the Dover Policy Language (DPL). Because DPL is
designed solely for the purpose of defining micropolicies, it
includes specialized features and constructs that result in the
most efficient code possible. A smaller codebase significantly
decreases the likelihood for software bugs. Additionally,
micropolicies and metadata are isolated from the rest of the
system in a separate, protected section of memory that cannot be
accessed by the system’s operating system or its applications;
only CoreGuard hardware can see and run CoreGuard
micropolicies. CoreGuard micropolicies are also encrypted and
code-signed, and installed using a secure boot process to
guarantee the integrity of micropolicy code.

B. Policy Enforcer

The Policy Enforcer is comprised of multiple IP blocks, and
the composition and design of those blocks will vary depending
on the method of integration. We will look at the variances later,
but it is helpful to first understand the main CoreGuard Policy
Enforcer blocks shown in Fig. 1: Hardware Interlock, Policy
Accelerator, and Policy Executor.

The CoreGuard Hardware Interlock serves as the gate
keeper between the host processor and the memory system,
including memory-mapped peripherals. In some integrations,
this block is either not needed or is replaced by a different block
that manages memory writes.

The CoreGuard Policy Accelerator is needed in any type
of integration. It optimizes the performance of CoreGuard by
maintaining multiple caches, including a rule cache that stores
rule processing data so that future requests for data can be served
faster. The Policy Accelerator is responsible for performing rule
cache lookups for each instruction.

The CoreGuard Policy Executor executes the micropolicy
code to generate rules for the Policy Accelerator. Policy
Executor functionality is needed with any integration, but can be
designed to use the host processor core, a dedicated processor
core, or a portion of an existing support processor (such as a
security core).

III. TYPES OF COREGUARD INTEGRATIONS

We divide CoreGuard integration options into two main
categories: trace-based and direct pipeline. In a trace-based
integration, the CoreGuard Policy Enforcer needs a few signals
from the host processor but does not require any changes to the
processor pipeline. With a direct pipeline integration,
CoreGuard IP blocks are incorporated directly into the processor
pipeline.

With both trace-based and direct pipeline integrations to a
RISC-V processor, the CoreGuard technology takes advantage
of key aspects of the RISC-V ISA. For example, the Physical
Memory Protection (PMP) feature prevents destructive-read
attacks/abuses by ensuring that a peripheral with destructive
read registers is readable only by the appropriate thread.

Fig. 2. Choosing a CoreGuard Integration Approach

Fig. 2 summarizes some decision points for choosing a
CoreGuard integration approach. Next, we’ll take a closer look
at each of these approaches.

IV. TRACE-BASED INTEGRATIONS

With a trace-based integration, CoreGuard Policy Enforcer
IP blocks are wired up next to an existing host processor. This
makes it a suitable approach for SoC designers working with a
processor they cannot modify. Trace-based approaches—with
various caching and trace buffer requirements—let a designer
achieve different levels of power, performance, and area
efficiency. There are three trace-based integration approaches:
Cached Host, CoreGuard Cache, and Write Queue.

A. Cached Host Approach

With a Cached Host integration, CoreGuard Policy Enforcer
IP blocks integrate with a host core that includes its own L1
caches. This approach uses a trace buffer to create an elastic
interface between the host processor and the CoreGuard
Accelerator.

The trace buffer captures the host processor’s instruction and
data trace for validation of the retired instruction by the
CoreGuard Policy Accelerator. In addition, the Policy
Accelerator has its own L1 metadata cache to match the caching
performance of the cached host. Ideally, the geometry, capacity,
and eviction strategy (replacement policy) of the metadata cache
will match that of the host processor’s cache, but the Policy
Accelerator’s trace buffers are able to cushion any tag cache
misses from affecting overall system performance.

The Policy Accelerator is highly configurable, with settings
to change the geometry and capacity of the metadata caches. The
eviction strategy is not yet configurable, but will be in a future
CoreGuard version that can integrate with different host
processors that employ a variety of eviction strategies.

In a Cached Host configuration, CoreGuard does not protect
writes to the host processor’s embedded L1 cache, but employs
additional measures to ensure that a violation affects only the
current execution thread.

Modify the processor pipeline?

Use a cache?

YES

Processor core has an L1 cache?

NO YES

NO YES

Write
Queue

CoreGuard
Cache

Cached
Host

Direct
Pipeline

TRACE-BASED TRACE-BASED TRACE-BASED

Integrates with
the simplest
processors

Needs a PC
trace only

Integrates with
existing
closed-
architecture
cached
processors

Requires
additional
trace
information

Significantly
more area
efficient
than the
Cached Host
approach

Smallest trace-
based approach

Most area
efficient
approach

Needs a PC
trace only

Simplest
violation
handling

NO

Fig. 3. Cached Host Trace-Based Integration

Fig. 4. CoreGuard Cache Trace-Based Integration

While a Cached Host approach enables CoreGuard
technology to integrate to existing high-performance cores, it is
the least area efficient integration option due to the additional
caches and replication of pipeline and decode logic.

B. CoreGuard Cache Approach

With this approach, an uncached host processor combines
with a CoreGuard Cache to create a cached host processor. The
CoreGuard Cache caches data and metadata together, using a
coherent write queue to protect stores to the cached data until
associated instructions are validated. Violation handling code is
significantly less complex than with the Cached Host approach,
but still provides only an asynchronous exception that results in
killing an entire current execution thread.

The CoreGuard Cache works with the CoreGuard
Accelerator to provide instruction words and data addresses for
metadata processing, enabling integration with processors
containing a minimal/filtered trace of only the retired PC stream.
The CoreGuard Accelerator therefore doesn’t require its own L1
metadata caches, significantly reducing overall area and bus
fabric complexity. As shown in Fig. 4, this approach needs only
a small trace buffer because the CoreGuard Cache maintains
metadata with instruction/data lines. This minimizes memory
traffic and cache-miss penalties by fetching data and metadata
together.

C. Write Queue Approach

With the Write Queue approach, CoreGuard IP can integrate
to the simplest of processor cores, requiring nothing more than
a PC trace. CoreGuard does not require a cache, but instead uses
a CoreGuard Write Queue to prevent writes to the memory
system while the trace-based CoreGuard Policy Accelerator
verifies retired instructions.

Fig. 5. Write Queue Trace-Based Integration

CoreGuard sniffs instruction reads from the processor and
uses the Write Queue to capture a history of the instruction
addresses and instruction words. When the PC trace is presented
from the output of the processor, CoreGuard matches up
instruction words based on the instruction address, discarding
buffered instruction words until it finds a match to the next
retired PC. This enables CoreGuard to gain access to the
instruction word without adding memory bandwidth, and
without modification to the processor to present the instruction
word at the trace output.

Data access of the processor goes through the CoreGuard
Write Queue, which sends a copy of store addresses to the
CoreGuard Accelerator for use in vetting store instructions
against the installed set of micropolicies. Once a store
instruction is vetted, the store is forwarded to the memory
system. The CoreGuard Write Queue is pipelined to match the
pipeline depth of the CoreGuard Accelerator and prevent any
reduction in memory bandwidth. In addition, the CoreGuard
Write Queue maintains memory order and coherency between
read and write interfaces.

A Write Queue integration results in the smallest type of
trace-based CoreGuard implementation. With no caching
effects, it has the lowest power consumption. Additionally, this
approach benefits from the same savings in violation handling
complexity as a CoreGuard Cache integration—primarily
because it doesn’t have to deal with figuring out which dirty
words from the cache to save to memory and which to discard.

V. DIRECT PIPELINE INTEGRATIONS

The openness of the RISC-V architecture presents designers
with the best opportunity for a tightly-coupled CoreGuard
integration. In a Direct Pipeline integration, CoreGuard Policy
Enforcer IP blocks are embedded directly into the processor
pipeline using simple interfaces that hook into common
processor stages to handle metadata processing in lock-step with
instruction execution of the processor. Minimally, these
interfaces will pass in 1) a stalling mechanism for when the
CoreGuard logic requires more cycles than the native processor
logic, and (2) a synchronous exception mechanism to invoke an
exception handler rather than retire an instruction during the
final Write-Back stage of the pipeline. Each block can be
pipelined to additional cycles to match up with a processor’s
pipeline and clock period requirement. A Direct Pipeline
integration can be done as a cache-less design or using the
CoreGuard Cache block.

COREGUARD
POLICY ENFORCER

HOST PROCESSOR

Shape
Decode

Policy Accelerator

Hardware
Interlock

Rule

Processing
Metadata
Cache(s)

Policy
Executor

Trace
Buffers

Host
Fetch

Host
Decode

Host
Execute

Processor Pipeline

L1 Cache(s)

COREGUARD
POLICY ENFORCER

HOST PROCESSOR

Shape
Decode

Policy Accelerator

CoreGuard
Cache(s)

Rule

Processing

Policy
Executor

Trace
Buffers

Host
Fetch

Host
Decode

Host
Execute

Processor Pipeline

COREGUARD
POLICY ENFORCER

HOST PROCESSOR

Shape
Decode

Policy Accelerator

Write Queue

Rule

Processing

Policy
Executor

Trace
Buffers

Host
Fetch

Host
Decode

Host
Execute

Processor Pipeline

Fig. 6. Direct Pipeline Integration

As Fig. 6 illustrates, the Shape Decode and Rule Processing
stages are smaller than in a trace-based integration because they
rely on the host processor control pipeline, rather than re-
implement their own.

A Direct Pipeline integration enables CoreGuard to present
policy violations as synchronous exception events in the
pipeline. Rather than killing an entire execution thread after
there is a violation, exceptions are handled immediately in the
context of the specific instruction that triggered the violation.

Fig. 6 also shows that there is no separate Policy Executor in
a Direct Pipeline integration. The job of executing micropolicy
code is handled by the host processor in M-mode (machine
mode). M-mode is ideal for running security processes because
it is RISC-V’s highest privilege mode and not interruptible by
lower modes.

Running in M-mode also gives the Policy Enforcer access to
RISC-V’s PMP. As mentioned earlier, all CoreGuard
integrations use PMP to prevent destructive-read attacks/abuses,
but with a Direct Pipeline integration, PMP can be leveraged to
correct a destructive-read violation without having to resort to
killing an entire thread.

All these factors combine to make a CoreGuard Direct
Pipeline implementation the simplest and most area efficient
design of a secure processor.

VI. PPA AND MEMORY REQUIREMENTS

Integrating CoreGuard directly with the processor pipeline
provides the greatest opportunities for area efficiency, but both
Direct Pipeline and trace-based approaches enable SoC and
processor designers to balance the costs and benefits of
embedding security into their systems. Exact requirements for
power, performance, area (PPA) and memory will depend on
SoC specifications and the selected set of micropolicies, but
Table 1 describes typical requirements based on a trace-based
integration with a microcontroller host processor target
synthesized with a Global Foundries 28nm HPP process. Note
that the requirements with an LPP process would be
significantly different.

With a Direct Pipeline integration, a simple five-stage, in
order pipeline RISC-V RV32I core grows by approximately
30%. The overhead on a more complex RISC-V core would be
even lower since the CoreGuard area stays fixed while the
overall processor’s area grows.

TABLE I. COREGUARD PPA AND MEMORY REQUIREMENTS

Power

CoreGuard’s total power consumption is 21.9 milliwatts with

a 500 MHz clock frequency.

(21.9 mW @ 500 MHz, 33.0 mW @ 750 MHz, 44.1 mW @ 1000 MHz)

Performance
There is little to no impact on performance when running with

CoreGuard’s base set of micropolicies (RWX, Heap, and Stack).

Area

CoreGuard’s total synthesized area is 0.121 square millimeters

with a 500 MHz clock frequency.

(0.121 mm2 @ 500 MHz, 0.123 mm2 @ 750 MHz, 0.130 mm2 @ 1000 MHz)

Memory

Size of micropolicy metadata is a function of which
micropolicies are installed on a system and the system’s

memory map. Roughly, metadata will consume 20-25% of the
memory footprint.

VII. CONCLUSION

The CoreGuard solution addresses our cybersecurity
problem at the root cause: the attackers’ ability to exploit
software vulnerabilities in order to hijack processors and get
them to do their bidding. Because it is hardwired directly into
the silicon, CoreGuard is unassailable and cannot be subverted
over the network. Adding any hardware IP comes at a price,
however, and SoC and processor designers strive to balance the
costs and benefits of embedding security into their systems.
CoreGuard is architected to help designers with this critical
balancing act.

For the SoC designer implementing either a soft- or hard-
core RISC-V processor, there are a variety of trace-based
integration approaches that do not require any modifications to
the processor pipeline. This flexibility allows designers to avoid
vendor lock in and standardize on CoreGuard across a multitude
of RISC-V processor offerings.

For the processor designer creating a new RISC-V
processor—with full freedom to modify the processor
implementation—there is a direct pipeline approach that results
in the most efficient design and empowers designers to create a
major competitive advantage by having the most robust
cybersecurity solution on the market today.

Whatever the integration approach, CoreGuard technology
and the RISC-V architecture are a perfect match for designing a
processor core or SoC that optimizes power, performance, area,
and security.

REFERENCES

[1] S. McConnell, Code Complete, Second ed., Microsoft Press, 2004.

[2] Cybersecurity Ventures, "Application Security Report," Cybersecurity

Ventures, Menlo Park, 2017.

[3] The MITRE Corporation, "Common Vulnerabilities and Exposures
(CVE)," 05 February 2019. [Online]. Available:

https://cve.mitre.org/index.html.

[4] The MITRE Corporation, "Common Weakness Enumeration (CWE),"

The MITRE Corporation, 20 February 2020. [Online]. Available:

https://cwe.mitre.org/.

[5] Dover Microsystems, "CoreGuard Cybersecurity Scorecard," February

2020. [Online]. Available:

https://app.hubspot.com/documents/3382333/view/64518455?accessId=c

a5f29.

HOST PROCESSOR

Host
Fetch

Host
Decode

Host
Execute

Shape

Decode

Policy Accelerator

Rule
Processing

CoreGuard
Cache(s)

	I. Introduction
	II. How CoreGuard Technology Works
	A. Micropolicies
	B. Policy Enforcer

	III. Types of CoreGuard Integrations
	IV. Trace-Based Integrations
	A. Cached Host Approach
	B. CoreGuard Cache Approach
	C. Write Queue Approach

	V. Direct Pipeline Integrations
	VI. PPA and Memory Requirements
	VII. Conclusion
	References

