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Abstract—Dover Microsystems’ CoreGuard® is the only 

solution for embedded systems that prevents the exploitation of 

software vulnerabilities and immunizes processors against entire 

classes of network-based attacks. It does this by hardwiring 

security directly into the silicon, providing a physical layer of 

protection that prevents an attacker’s ability to take over the 

processor.  CoreGuard technology is delivered as IP blocks that 

give processor and SoC designers a variety of options for using, 

modifying, or extending a RISC-V processor. The “right” option 

is based on many factors, such as PPA (Power, Performance, and 

Area) constraints and how much flexibility the designer has over 

the processor implementation. This paper describes options for 

integrating CoreGuard IP with a RISC-V host processor. While 

CoreGuard technology is architecture agnostic, the openness and 

privilege model of the RISC-V architecture sets a perfect stage for 

the most adaptable and streamlined methods of integration. 
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I. INTRODUCTION

Today’s processors blindly execute instructions, and do not 
have the knowledge to distinguish between good and bad 
behavior. Compounding this issue is the fact that most 
cyberattackers exploit bugs in software, and there are on average 
15-50 bugs per thousand lines of delivered code [1]. With an
unprecedented approach to cybersecurity, CoreGuard
technology addresses both facets of this problem.

II. HOW COREGUARD TECHNOLOGY WORKS

CoreGuard is silicon IP that integrates with RISC processors 
to protect embedded systems from cyberattacks by enforcing 
security, safety, and privacy rules—called micropolicies—that 
precisely define allowed versus disallowed behavior at the per-
instruction level. CoreGuard maintains micropolicy-relevant 
metadata about every word in memory, and then uses this 
metadata to crosscheck each instruction processed against the 
installed set of micropolicies. If an instruction violates any 
micropolicy, CoreGuard Policy Enforcer hardware quarantines 
the instruction’s output and sends a micropolicy violation to the 
host processor.  

Fig. 1. CoreGuard High-Level Architecture 

Fig. 1 is a notional representation of the CoreGuard 
architecture. Depending on the requirements and constraints of 
a design, CoreGuard technology can be instantiated entirely 
external to the host processor core, or it can be integrated within 
the host processor core logic. Before describing the various 
integration options, let’s take a closer look at CoreGuard’s two 
main components: micropolicies and the Policy Enforcer. 

A. Micropolicies

With an estimated 111 billion lines of new software code
produced each year [2], there is an ever-expanding universe of 
vulnerabilities for cyberattackers to exploit. Fortunately, there 
are a lot of publicly available and frequently updated data about 
specific vulnerabilities and categories of software weaknesses.  

Dover uses two broadly-accepted databases maintained by 
The MITRE Corporation and sponsored by the U.S. Department 
of Homeland Security Cybersecurity and Infrastructure Security 
Agency: CVE (Common Vulnerabilities and Exposures) [3] and 
CWE (Common Weakness Enumeration) [4].  

Informed by these databases, Dover writes targeted 
CoreGuard micropolicies to protect against classes of attack that 
exploit common categories of software weaknesses [5]. For 
example, CoreGuard Heap and Stack micropolicies are designed 
to block attacks that exploit buffer overflow vulnerabilities. It 

SOFTWAREHARDWARE

Memory Reads

CoreGuard Micropolicies

Policy Violation Handler

Operating System

Application Code & Data

Software

Metadata

Host 
Processor Memory 

Writes

Micropolicy 
Violation

Allowed
Memory 
Writes

CoreGuard 
Policy Enforcer

Hardware Interlock

Policy Accelerator

Policy Executor

First International Workshop on Secure RISC-V Architecture Design 

Exploration (SECRISC-V’20). It is held in conjunction with the IEEE 

International Symposium on Performance Analysis of Systems and 

Software (ISPASS) - August 23rd, 2020 in Boston, Massachusetts, USA. 



doesn’t matter how many new bugs are discovered within a 
particular category of weaknesses; micropolicies block the 
entire class of attack, whether it is associated with two 
vulnerabilities or two million. 

Dover writes CoreGuard micropolicies in a domain-specific 
language, the Dover Policy Language (DPL). Because DPL is 
designed solely for the purpose of defining micropolicies, it 
includes specialized features and constructs that result in the 
most efficient code possible. A smaller codebase significantly 
decreases the likelihood for software bugs. Additionally, 
micropolicies and metadata are isolated from the rest of the 
system in a separate, protected section of memory that cannot be 
accessed by the system’s operating system or its applications; 
only CoreGuard hardware can see and run CoreGuard 
micropolicies. CoreGuard micropolicies are also encrypted and 
code-signed, and installed using a secure boot process to 
guarantee the integrity of micropolicy code. 

B. Policy Enforcer

The Policy Enforcer is comprised of multiple IP blocks, and
the composition and design of those blocks will vary depending 
on the method of integration. We will look at the variances later, 
but it is helpful to first understand the main CoreGuard Policy 
Enforcer blocks shown in Fig. 1: Hardware Interlock, Policy 
Accelerator, and Policy Executor. 

The CoreGuard Hardware Interlock serves as the gate 
keeper between the host processor and the memory system, 
including memory-mapped peripherals. In some integrations, 
this block is either not needed or is replaced by a different block 
that manages memory writes. 

The CoreGuard Policy Accelerator is needed in any type 
of integration. It optimizes the performance of CoreGuard by 
maintaining multiple caches, including a rule cache that stores 
rule processing data so that future requests for data can be served 
faster. The Policy Accelerator is responsible for performing rule 
cache lookups for each instruction. 

The CoreGuard Policy Executor executes the micropolicy 
code to generate rules for the Policy Accelerator. Policy 
Executor functionality is needed with any integration, but can be 
designed to use the host processor core, a dedicated processor 
core, or a portion of an existing support processor (such as a 
security core). 

III. TYPES OF COREGUARD INTEGRATIONS

We divide CoreGuard integration options into two main 
categories: trace-based and direct pipeline. In a trace-based 
integration, the CoreGuard Policy Enforcer needs a few signals 
from the host processor but does not require any changes to the 
processor pipeline. With a direct pipeline integration, 
CoreGuard IP blocks are incorporated directly into the processor 
pipeline. 

With both trace-based and direct pipeline integrations to a 
RISC-V processor, the CoreGuard technology takes advantage 
of key aspects of the RISC-V ISA. For example, the Physical 
Memory Protection (PMP) feature prevents destructive-read 
attacks/abuses by ensuring that a peripheral with destructive 
read registers is readable only by the appropriate thread.  

Fig. 2. Choosing a CoreGuard Integration Approach 

Fig. 2 summarizes some decision points for choosing a 
CoreGuard integration approach. Next, we’ll take a closer look 
at each of these approaches. 

IV. TRACE-BASED INTEGRATIONS

With a trace-based integration, CoreGuard Policy Enforcer 
IP blocks are wired up next to an existing host processor. This 
makes it a suitable approach for SoC designers working with a 
processor they cannot modify. Trace-based approaches—with 
various caching and trace buffer requirements—let a designer 
achieve different levels of power, performance, and area 
efficiency. There are three trace-based integration approaches: 
Cached Host, CoreGuard Cache, and Write Queue. 

A. Cached Host Approach

With a Cached Host integration, CoreGuard Policy Enforcer
IP blocks integrate with a host core that includes its own L1 
caches.  This approach uses a trace buffer to create an elastic 
interface between the host processor and the CoreGuard 
Accelerator. 

The trace buffer captures the host processor’s instruction and 
data trace for validation of the retired instruction by the 
CoreGuard Policy Accelerator. In addition, the Policy 
Accelerator has its own L1 metadata cache to match the caching 
performance of the cached host. Ideally, the geometry, capacity, 
and eviction strategy (replacement policy) of the metadata cache 
will match that of the host processor’s cache, but the Policy 
Accelerator’s trace buffers are able to cushion any tag cache 
misses from affecting overall system performance.  

The Policy Accelerator is highly configurable, with settings 
to change the geometry and capacity of the metadata caches. The 
eviction strategy is not yet configurable, but will be in a future 
CoreGuard version that can integrate with different host 
processors that employ a variety of eviction strategies. 

In a Cached Host configuration, CoreGuard does not protect 
writes to the host processor’s embedded L1 cache, but employs 
additional measures to ensure that a violation affects only the 
current execution thread. 
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Fig. 3. Cached Host Trace-Based Integration 

Fig. 4. CoreGuard Cache Trace-Based Integration 

While a Cached Host approach enables CoreGuard 
technology to integrate to existing high-performance cores, it is 
the least area efficient integration option due to the additional 
caches and replication of pipeline and decode logic. 

B. CoreGuard Cache Approach

With this approach, an uncached host processor combines
with a CoreGuard Cache to create a cached host processor. The 
CoreGuard Cache caches data and metadata together, using a 
coherent write queue to protect stores to the cached data until 
associated instructions are validated. Violation handling code is 
significantly less complex than with the Cached Host approach, 
but still provides only an asynchronous exception that results in 
killing an entire current execution thread. 

The CoreGuard Cache works with the CoreGuard 
Accelerator to provide instruction words and data addresses for 
metadata processing, enabling integration with processors 
containing a minimal/filtered trace of only the retired PC stream. 
The CoreGuard Accelerator therefore doesn’t require its own L1 
metadata caches, significantly reducing overall area and bus 
fabric complexity. As shown in Fig. 4, this approach needs only 
a small trace buffer because the CoreGuard Cache maintains 
metadata with instruction/data lines. This minimizes memory 
traffic and cache-miss penalties by fetching data and metadata 
together. 

C. Write Queue Approach

With the Write Queue approach, CoreGuard IP can integrate
to the simplest of processor cores, requiring nothing more than 
a PC trace. CoreGuard does not require a cache, but instead uses 
a CoreGuard Write Queue to prevent writes to the memory 
system while the trace-based CoreGuard Policy Accelerator 
verifies retired instructions. 

Fig. 5. Write Queue Trace-Based Integration 

CoreGuard sniffs instruction reads from the processor and 
uses the Write Queue to capture a history of the instruction 
addresses and instruction words.  When the PC trace is presented 
from the output of the processor, CoreGuard matches up 
instruction words based on the instruction address, discarding 
buffered instruction words until it finds a match to the next 
retired PC. This enables CoreGuard to gain access to the 
instruction word without adding memory bandwidth, and 
without modification to the processor to present the instruction 
word at the trace output. 

Data access of the processor goes through the CoreGuard 
Write Queue, which sends a copy of store addresses to the 
CoreGuard Accelerator for use in vetting store instructions 
against the installed set of micropolicies. Once a store 
instruction is vetted, the store is forwarded to the memory 
system. The CoreGuard Write Queue is pipelined to match the 
pipeline depth of the CoreGuard Accelerator and prevent any 
reduction in memory bandwidth.  In addition, the CoreGuard 
Write Queue maintains memory order and coherency between 
read and write interfaces.  

A Write Queue integration results in the smallest type of 
trace-based CoreGuard implementation. With no caching 
effects, it has the lowest power consumption. Additionally, this 
approach benefits from the same savings in violation handling 
complexity as a CoreGuard Cache integration—primarily 
because it doesn’t have to deal with figuring out which dirty 
words from the cache to save to memory and which to discard. 

V. DIRECT PIPELINE INTEGRATIONS

The openness of the RISC-V architecture presents designers 
with the best opportunity for a tightly-coupled CoreGuard 
integration. In a Direct Pipeline integration, CoreGuard Policy 
Enforcer IP blocks are embedded directly into the processor 
pipeline using simple interfaces that hook into common 
processor stages to handle metadata processing in lock-step with 
instruction execution of the processor. Minimally, these 
interfaces will pass in 1) a stalling mechanism for when the 
CoreGuard logic requires more cycles than the native processor 
logic, and (2) a synchronous exception mechanism to invoke an 
exception handler rather than retire an instruction during the 
final Write-Back stage of the pipeline. Each block can be 
pipelined to additional cycles to match up with a processor’s 
pipeline and clock period requirement. A Direct Pipeline 
integration can be done as a cache-less design or using the 
CoreGuard Cache block.  
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Fig. 6. Direct Pipeline Integration 

As Fig. 6 illustrates, the Shape Decode and Rule Processing 
stages are smaller than in a trace-based integration because they 
rely on the host processor control pipeline, rather than re-
implement their own. 

A Direct Pipeline integration enables CoreGuard to present 
policy violations as synchronous exception events in the 
pipeline. Rather than killing an entire execution thread after 
there is a violation, exceptions are handled immediately in the 
context of the specific instruction that triggered the violation. 

Fig. 6 also shows that there is no separate Policy Executor in 
a Direct Pipeline integration. The job of executing micropolicy 
code is handled by the host processor in M-mode (machine 
mode). M-mode is ideal for running security processes because 
it is RISC-V’s highest privilege mode and not interruptible by 
lower modes.  

Running in M-mode also gives the Policy Enforcer access to 
RISC-V’s PMP. As mentioned earlier, all CoreGuard 
integrations use PMP to prevent destructive-read attacks/abuses, 
but with a Direct Pipeline integration, PMP can be leveraged to 
correct a destructive-read violation without having to resort to 
killing an entire thread.  

All these factors combine to make a CoreGuard Direct 
Pipeline implementation the simplest and most area efficient 
design of a secure processor. 

VI. PPA AND MEMORY REQUIREMENTS

Integrating CoreGuard directly with the processor pipeline 
provides the greatest opportunities for area efficiency, but both 
Direct Pipeline and trace-based approaches enable SoC and 
processor designers to balance the costs and benefits of 
embedding security into their systems. Exact requirements for 
power, performance, area (PPA) and memory will depend on 
SoC specifications and the selected set of micropolicies, but 
Table 1 describes typical requirements based on a trace-based 
integration with a microcontroller host processor target 
synthesized with a Global Foundries 28nm HPP process. Note 
that the requirements with an LPP process would be 
significantly different. 

With a Direct Pipeline integration, a simple five-stage, in 
order pipeline RISC-V RV32I core grows by approximately 
30%. The overhead on a more complex RISC-V core would be 
even lower since the CoreGuard area stays fixed while the 
overall processor’s area grows.  

TABLE I. COREGUARD PPA AND MEMORY REQUIREMENTS 

Power 

CoreGuard’s total power consumption is 21.9 milliwatts with 

a 500 MHz clock frequency.  

(21.9 mW @ 500 MHz, 33.0 mW @ 750 MHz, 44.1 mW @ 1000 MHz)  

Performance 
There is little to no impact on performance when running with 

CoreGuard’s base set of micropolicies (RWX, Heap, and Stack). 

Area 

CoreGuard’s total synthesized area is 0.121 square millimeters 

with a 500 MHz clock frequency.  

(0.121 mm2 @ 500 MHz, 0.123 mm2 @ 750 MHz, 0.130 mm2 @ 1000 MHz)  

Memory 

Size of micropolicy metadata is a function of which 
micropolicies are installed on a system and the system’s 

memory map. Roughly, metadata will consume 20-25% of the 
memory footprint. 

VII. CONCLUSION

The CoreGuard solution addresses our cybersecurity 
problem at the root cause: the attackers’ ability to exploit 
software vulnerabilities in order to hijack processors and get 
them to do their bidding. Because it is hardwired directly into 
the silicon, CoreGuard is unassailable and cannot be subverted 
over the network. Adding any hardware IP comes at a price, 
however, and SoC and processor designers strive to balance the 
costs and benefits of embedding security into their systems. 
CoreGuard is architected to help designers with this critical 
balancing act.  

For the SoC designer implementing either a soft- or hard-
core RISC-V processor, there are a variety of trace-based 
integration approaches that do not require any modifications to 
the processor pipeline. This flexibility allows designers to avoid 
vendor lock in and standardize on CoreGuard across a multitude 
of RISC-V processor offerings.  

For the processor designer creating a new RISC-V 
processor—with full freedom to modify the processor 
implementation—there is a direct pipeline approach that results 
in the most efficient design and empowers designers to create a 
major competitive advantage by having the most robust 
cybersecurity solution on the market today. 

Whatever the integration approach, CoreGuard technology 
and the RISC-V architecture are a perfect match for designing a 
processor core or SoC that optimizes power, performance, area, 
and security.   
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