
Verifying RISC-V Physical Memory Protection
Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W. Kohlbrenner, Krste Asanović, Sanjit A. Seshia

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Email: {kcheang, crasmussen, dayeol, dkohlbre, krste, sseshia}@berkeley.edu

Abstract—We formally verify an open-source hardware im-
plementation of physical memory protection (PMP) in RISC-
V, which is a standard feature used for memory isolation in
security critical systems such as the Keystone trusted execu-
tion environment. PMP provides per-hardware-thread machine-
mode control registers that specify the access privileges for
physical memory regions. We first formalize the functional
property of the PMP rules based on the RISC-V ISA manual.
Then, we use the LIME tool to translate an open-source
implementation of the PMP hardware module written in Chisel
to the Uclid5 formal verification language. We encode the formal
specification in Uclid5 and verify the functional correctness of
the hardware. This is an initial effort towards verifying the
Keystone framework, where the trusted computing base (TCB)
relies on PMP to provide security guarantees such as integrity
and confidentiality.

I. INTRODUCTION

Physical memory protection (PMP) is a standard RISC-V
feature that allows the firmware to specify physical memory
regions and control the memory access permissions. Many
systems have adopted PMP to protect memory regions for
high-privilege binaries (e.g., firmware) or devices. For exam-
ple, OpenSBI [1] uses PMP to allow the firmware to protect
its own memory region when the machine boots. PMP has
been also used in trusted execution environments based on
RISC-V [2], [3]. Keystone [2] uses multiple PMP entries to
isolate each enclave from the rest of the system including
the privileged operating system, and also to manage shared
memory regions. Keystone utilizes several PMP rules such as
whitelist-based or prioritized address matching to implement
a flexible memory isolation scheme. Thus, it is fair to say
that the entire security guarantee of Keystone relies on the
functional correctness of PMP.

One way to ensure functional correctness of hardware or
software is to use formal methods. Formal methods provide
machine-assisted proofs for a given formalization and can be
used to ensure specific properties hold on a system imple-
mentation. We claim that the formal verification of PMP is
needed as a first step to ensure security guarantees of systems
such as Keystone. However, we find that the implementation
of PMP rules has not been previously formally verified. We
also find that the PMP rules are well-defined yet not formally
specified.

In our work, we formally verify the hardware implemen-
tation of PMP rules. First, we provide a formal specification
of the PMP feature in RISC-V ISA. To model the hardware
implementation, we automatically generate the formal model
of the PMP module in an open-source RISC-V core, Rocket

Chip [4], by using a tool, LIME [5]. LIME can translate
the FIRRTL [6], an intermediate representation of Chisel [7]
hardware description language, to the Uclid5 [8] verification
language. Then, we encode the specification of PMP based
off of the RISC-V ISA manual to verify the functional
correctness of the module, PMPChecker, a core unit for
PMP. We also verify a restricted configuration of the PMP
unit to ease the verification effort and describe this in the
evaluation section.

Our verification results show that the current implemen-
tation of PMP rules in Rocket Chip is functionally cor-
rect. However, we acknowledge that it does not imply the
functional correctness of the entire PMP implementation.
The correctness of PMP not only relies on other hardware
components such as translation look-aside buffer (TLB) and
page table walker (PTW), but also requires a correct software
implementation. For example, a memory access may bypass
the PMP rule if the address is cached in TLB. In order to
prevent this, most systems including Keystone flush the TLB
whenever it changes the local PMP policy. Also, previous
work [9] has reported that a bug in other hardware component
can cause a failure on memory accesses which PMPChecker
allows. We plan to extend our verification to include the
other hardware components that may affect the actual PMP
enforcement as well as the software that uses PMP.

II. RELATED WORK

Existing commercial implementations of enclaves like
Intel’s SGX [10] lack transparency on formal correctness
guarantees and higher level security properties such as con-
fidentiality and integrity. On the other hand, non-commercial
implementations of enclaves, such as MIT’s Sanctum [11],
lack formal reasoning at the hardware level. Despite prior
work on verifying the design of these enclaves [12] at a
higher abstraction level, there is little work on verifying the
full implementation details of the underlying hardware at the
RTL implementation level. This work aims to fill this gap
by reasoning about PMP at the RTL level to provide strong
security guarantees for enclaves built using Keystone and in
general, for applications that use PMP.

III. BACKGROUND

A. Physical Memory Protection (PMP) and Keystone

To provide an overview, PMP controls the access per-
missions to a specified physical memory region, by using
a set of control status registers (CSR) in RISC-V. Each core



Mode R W X Address Range

PMP registers

pmpcfg0

Untrusted Context

pmpcfg1

pmpcfgN

pmpaddr0

pmpaddrN

pmpaddr1
Hi

gh
er

 P
rio

rit
y

pmpaddr2
…

rwx=000

OS

rwx=000

rwx=111

SM
Region

Enclave
Region

pmpcfg2

Fig. 1. An example usage of RISC-V PMP: memory isolation in Keystone
enclaves.

may have 0-16 PMP registers, each of which consists of a
configuration (pmpcfg) and an address register (pmpaddr)
to define a PMP entry. As shown in Figure 1, the pmpcfg
register defines the addressing mode and permission bits,
and pmpaddr specifies the address range by encoding the
address using a selected addressing mode. There are three
addressing modes: 4-byte aligned word (NA4), naturally-
aligned power-of-two (NAPOT), or top-of-range (TOR). PMP
entries act as a whitelist, which means that the memory is
inaccessible if none of the PMP entries are defined. The PMP
entries are also statically prioritized, such that the lowest-
numbered PMP entry that matches any byte of a memory
access in addition to the privilege mode, determines whether
the memory access succeeds or fails [13].

These PMP rules are critical to the memory isolation
in Keystone trusted execution environment (TEE). When
the system boots, a software called the security monitor
in Keystone uses the first PMP register to protect its own
memory region by setting all permission bits to zero and
configuring the address to cover the entire image as well
as the stack (Figure 1). Then, it sets the last (the lowest
priority) PMP register to let the OS access the remaining
part of the memory. Upon the creation of an enclave, the
security monitor allocates an available PMP register, to seal
and isolate the enclave memory. Because of the priority, the
OS is never allowed to access either the security monitor’s
or enclave’s memory.

In Keystone, the security monitor implements memory
isolation by switching the permission bits when the context
changes. Before an enclave starts to run, the security monitor
flips the permission bits in the enclave’s PMP entry in order
to allow computation on its isolated memory. In addition, the
security monitor invalidates the last PMP register, in order to
deny the enclave access to the operating system’s memory.

IV. FORMAL SPECIFICATION

PMP controls the memory access based on a few RISC-V
control-and-status registers (CSRs). PMP logically consists
of multiple PMP entries and each entry specifies a range
of physical address and read, write, and execute permis-
sions. In Rocket Chip, a RISC-V open-source processor,
PMP rules are implemented by a core hardware module
called PMPChecker. We begin by defining the function of
PMPChecker and then define a set of primitive functions
that abstractly describe the behavior of the PMPChecker

and finally state the functional property of the PMPChecker.
As a precursor, the PMPChecker is a combinatorial logic
circuit that takes in the address and the size of a memory
access. However, it also takes inputs from the system, which
are the PMP registers and the current privilege mode of the
core.

First, we define the set of finite bit addresses to be A, the
set of PMP region indices to be N , and the set of bitvectors
of width n to be {0, 1}n. Focusing on the PMPChecker
of the PMP unit, the set of argument variables of the
PMPChecker consists of the address to the PMPChecker
Iaddr ∈ {0, 1}N (where N is the architecture address length),
the size of the memory access 2Isize , Isize ∈ {0, 1}2, the
current PMP register states Icfg which is an array of type
cfg = {l, x, w, r} (i.e., a struct of 1-bit variables: l is
the lock bit, and r, w, x are the read, write, and execute
permissions respectively), and the current privilege mode of
the RISC-V system Iprv 1. The output variables contain the
permission of the memory access for the current privilege
mode Iprv, denoted by Or,Ow,Ox as the read, write, and
execute permissions respectively.

We now define the primitives used in our PMPChecker
property: let rσ(addr, i) : (addr, i) 7→ bool be a function
that returns true when the address addr is contained within
the ith PMP region and aσ(addr, i) : (addr, i) 7→ bool be a
function that returns true when the address addr is within the
region’s mask (i.e., the address is aligned according to the
addressing mode). To reason about whether an address addr
is within a region’s boundary, we define rlo,σ(i) : i 7→ A and
rhi,σ(i) : i 7→ A as functions that return the low and high
address of the ith region. In the RISC-V ISA, rlo and rhi
are defined by the addressing mode (e.g. NAPOT).

Then r is defined as a function that returns true if and only
if for a given address addr and region i, address is between
the respective low and high address boundaries of that region:

∀addr ∈ A,∀i ∈ N ,

r(addr, i) ⇐⇒ rlo(i) ≤ addr ≤ rhi(i)
(1)

While a is defined as a function that returns true when the
given address is within the ith region’s range and implies
that the last byte accessed is also in bounds:

∀addr ∈ A,∀size ∈ {0, 1}2,∀i ∈ N ,

(r(addr, i) ∧ a(addr, i))⇒
(addr + (1 << size)− 1) ≤ rhi(i)

(2)

The primary property of the PMPChecker is that the
returned permission bits correspond to the highest priority
register that contains the queried address in its region with
the following exceptions:

1) If the address is not contained in any region, we return
the default permissions
• High privilege modes - full permissions
• Low privilege modes - no permission

2) If we are operating in a high privilege mode

1To denote the ith PMP region’s writable bit, we write Icfg [i].w.



• If the region is not locked, then we have full
permissions

• If the region is locked, then we only have access
according to the PMP region’s set permissions

3) If our access is large enough to only partially fall within
the boundary of the highest priority region, it will deny
all permissions

We decompose this property into three separate properties.
First, let low ∈ {0, 1} represent the value that variable prv
evaluates to if it is in low privilege mode. Conversely, high
privilege mode is represented by the negation of low: high =
¬low. Then the following first invariant captures the primary
invariant without breaking the exceptions and accounts for
exception 3 while the system operates in low privilege mode:

(Iprv = low)⇒
∀addr ∈ A,∀i ∈ N ,

(r(addr, i) ∧ ¬(∃j ∈ N , j < i ∧ r(addr, j)))⇒
Or = (Icfg[i].r ∧ a(addr, i))∧
Ow = (Icfg[i].w ∧ a(addr, i))∧
Ox = (Icfg[i].x) ∧ a(addr, i))

(3)

To handle exception 1, where the address is not in any
regions, we have the property:

∀addr ∈ A,¬(∃i ∈ N , r(addr, i))⇒
(Or = (Iprv 6= low)∧
Ow = (Iprv 6= low)∧
Ox = (Iprv 6= low))

(4)

And finally for exception 2 and 3, when the system mode is
in high privilege, we have the property:

(Iprv 6= low)⇒
∀addr ∈ A,∀i ∈ N ,

(r(addr, i) ∧ ¬(∃j ∈ N , j < i ∧ r(addr, j)))⇒
Or = ((¬Icfg[i].l ∨ Icfg[i].r) ∧ a(addr, i))∧
Ow = ((¬Icfg[i].l ∨ Icfg[i].w) ∧ a(addr, i))∧
Ox = ((¬Icfg[i].l ∨ Icfg[i].x) ∧ a(addr, i)))

(5)

V. EVALUATION

For our evaluation, we focused on verifying the PMP
FIRRTL implementation from the Rocket Chip core. More
specifically, we verified the functional correctness of the
PMPChecker using the Uclid5 verification toolkit.

The scope of the verification effort is restricted to verifying
the PMP model using the default configuration of the PMP
implementation in Rocket Chip. We also only verify the
PMPChecker module of Rocket Chip, which is the core
component that is queried and computes the permission bits
on every memory access.

A. Workflow

To build our verification model, we first emit the FIRRTL
implementation description for Rocket Chip by running a
low-FIRRTL pass over the Chisel implementation using the

Chisel generator. Then we use the LIME [5] translator to
automatically translate the FIRRTL description to a Uclid5
model. We then extracted the PMPChecker module from
the Uclid5 model, specified, and verified the PMPChecker
model with our functional specification described in the
previous section IV under specific default configurations 2.

B. Results

The Chisel implementation of the PMPChecker con-
tained 48 LoC which translated to Uclid5 models with 1125
LoC. When running Uclid5 on the model using Z3 as the
backend solver, the engine completed the verification using
1-step induction in 41.331s (real time) on a 2.6 GHz Intel
Core i7 machine with 16 GB RAM on OSX.

VI. FUTURE WORK

Although we show functional correctness of the
PMPChecker module, Rocket enforces PMP rules using
multiple other hardware components including the translation
look-side buffer (TLB) and page table walker (PTW). When
the core accesses an address, the TLB and the PTW will
translate the virtual addresses into a physical address, and
then PMPChecker return the permissions for that address
given the core’s current privilege mode. If the access is
restricted, the TLB entry for the address is prevented from
being filled, such that the access raises access fault. Thus, to
verify the functional correctness of the entire PMP, we also
need to verify the composition of these other components.
Also, the higher-level properties such as memory isolation
will not only rely on the functional correctness of hardware,
but also on the functional correctness of software interacting
with hardware. To this end, we are planning to formally
verify other hardware components as well as the Keystone
security monitor as an example software implementation.

VII. CONCLUSION

To conclude, we have provided a formal specification
of the PMPChecker, which is a core component of the
PMP feature in the RISC-V ISA. Using a Chisel generator
and the LIME transpiler, we automatically generated an
implementation accurate model of the PMPChecker from an
implementation of RISC-V and, Rocket Chip. We specified
the functional properties of the PMPChecker module and
verified it using Uclid5. This is a first step towards verifying
Keystone’s TCB.

ACKNOWLEDGEMENTS

We would like to thank Kevin Laeufer for providing
helpful feedback throughout the project.

REFERENCES

[1] Open SBI. https://github.com/riscv/opensbi. Accessed: 2020-03-19.
[2] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and

Dawn Song. Keystone: An Open Framework for Architecting Trusted
Execution Environments. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, 2020.

[3] Hex Five Security. https://hex-five.com/. Accessed: 2020-2-11.

2The models can be found at https://github.com/veri-v/pmpcheckerspec

https://github.com/riscv/opensbi
https://hex-five.com/
https://github.com/veri-v/pmpcheckerspec


[4] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu
Kim, John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert
Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew
Waterman. The Rocket Chip Generator. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[5] Albert Magyar, David Biancolin, Jack Koenig, Sanjit Seshia, Jonathan
Bachrach, and Krste Asanović. Golden Gate: Bridging The Resource-
Efficiency Gap Between ASICs and FPGA Prototypes. In 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2019.

[6] FIRRTL. https://github.com/freechipsproject/firrtl. Accessed: 2020-2-
11.

[7] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanovi-
undefined. Chisel: Constructing Hardware in a Scala Embedded
Language. In Proceedings of the 49th Annual Design Automation
Conference (DAC), 2012.

[8] Sanjit Seshia and Pramod Subramanyan. UCLID5: Integrating Model-
ing, Verification, Synthesis, and Learning. In MEMOCODE ’18, 2018.

[9] Luke Nelson and Xi Wang. Developing security monitors on RISC-V,
2019.

[10] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086, 2016. https://eprint.iacr.org/2016/
086.

[11] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In
USENIX Security Symposium, 2016.

[12] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas,
and Sanjit A. Seshia. A Formal Foundation for Secure Remote
Execution of Enclaves. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[13] Privileged ISA Specification. https://riscv.org/specifications/
privileged-isa/. Accessed: 2020-2-11.

https://github.com/freechipsproject/firrtl
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/

	Introduction
	Related Work
	Background
	Physical Memory Protection (PMP) and Keystone

	Formal Specification
	Evaluation
	Workflow
	Results

	Future Work
	Conclusion
	References

