Real-time Thread Isolation and
Trusted Execution on Embedded RISC-V

Samuel Lindemer, Gustav Midéus, Shahid Raza
RISE Cybersecurity Unit
RISE Research Institutes of Sweden
firstname.lastname @ri.se

Abstract—The Internet of Things paradigm has led to an
increasing demand for low-power single-core embedded devices
with hardware-enforced trusted execution environments (TEE).
The preeminent solution in this space is Arm TrustZone, which
provides four CPU execution states, each with its own memory
and instruction permissions. In 2019, physical memory protection
(PMP) instructions were ratified in the RISC-V ISA, which offers
enhancements similar to an Arm MPU, but does not enable
the creation of TEE frameworks similar to TrustZone. In this
paper, we discuss a limitation in the PMP specification which
precludes the design of such a TEE framework on RISC-V
without resorting to a non-standard hardware modification. We
propose a simple modification to the PMP specification which
would resolve this limitation without the addition of additional
registers. We discuss our early ongoing work in implementing a
prototype of this hardware extension and integrating it with the
Zephyr real-time operating system (RTOS).

Index Terms—embedded, security, IoT, RISC-V, TEE

I. INTRODUCTION

Traditional operating systems prevent applications from
accessing physical memory outside their addresses spaces
through a combination of software virtualization and a mem-
ory management unit (MMU) for address translation and
process isolation. Highly constrained embedded devices (e.g.,
battery-powered nodes with up to 32 KiB RAM) do not have
an MMU - all application code addresses physical memory
directly. Consequently, a successful code reuse attack (CRA)
could give an adversary complete control of system peripherals
and memory. Connecting such devices to a network would be
ill advised.

Constrained devices can employ a memory protection unit
(MPU) — essentially a simplified MMU without address trans-
lation — to achieve hardware-enabled memory isolation of un-
privileged software. An MPU requires the existence of at least
two hardware-enforced CPU privilege levels. In privileged
mode, the CPU can modify the memory access permissions
for unprivileged mode, and is thus usually reserved for the
embedded operating system. On each context switch, the CPU
reconfigures the MPU to allow access only to the stack and
heap required by the next thread.

The Arm Cortex-M processor core series, introduced in
2004, has since become a market leader for low-power net-
worked embedded devices, as it was designed from the outset
for strong RTOS support and an MPU hardware extension.
Arm later introduced TrustZone for Cortex-M, a set of hard-
ware extensions which enable the construction of trusted

execution environments (TEE). TrustZone creates two virtual
processors known as the secure world and the non-secure
world (see Figure 2). Each world has two privilege levels
enforced by its own MPU.

The open source RISC-V ISA began development in 2010
and became frozen in 2019, allowing developers and re-
searchers to work on a stable platform. RISC-V differentiates
itself from existing instruction sets, such as Arm and x86,
through its extensibility. Bare-metal embedded devices with a
single privilege level can be built with only the core ISA, but a
powerful multi-core machine can also be constructed using the
optional extensions. Several FPGA-ready open source RISC-
V implementations have been developed, such as the Rocket
Chip [1] and LiteX SoC with VexRiscv core [2]. These projects
have greatly improved RISC-V’s accessibility as a platform for
research in computer architecture.

II. RELATED WORK

Since the RISC-V ISA was frozen quite recently, some of
the existing TEE research is no longer consistent with the latest
specification. In 2017, Costan et al. gave a detailed summary of
the inherent challenges in verifying security claims made about
Intel SGX, the premier TEE solution for cloud environments
[3]. The authors advocate for simplicity above all else in TEE
design, as the number of vulnerabilities tend to scale with the
size of the trusted computing base (TCB). The latter half of
the same work introduced the Sanctum TEE architecture for
RISC-V [4] [5], which is heavily influenced by SGX.

In 2019, two other TEE frameworks for RISC-V were
proposed, TIMBER-V [6] and Keystone [7]. TIMBER-V is
intended for low-power embedded systems with real-time
scheduling requirements. This architecture is built on several
hardware extensions (tagged memory, tag-aware instructions,
new CPU registers and a custom MPU) in order to create two
domains, similar in principle to Arm TrustZone, and does not
utilize RISC-V’s recently added physical memory protection
(PMP) instructions. Keystone, in contrast, is designed for
less constrained machines with a traditional OS and does not
diverge from the latest ratified RISC-V ISA.

All three of these TEE frameworks for RISC-V require
three CPU privilege levels. The base ISA has only one level,
machine mode, which is intended for bootloaders and bare
metal code. Two more levels are currently ratified as exten-
sions, supervisor mode and user mode, which are intended for

running a traditional operating system with MMU support and
its applications. Sanctum and Keystone utilize M-mode to run
a security monitor (SM), which provides context switching
between an arbitrary number of enclaves running in the lower
privilege levels.

Low-power RISC-V platforms only implement M- and U-
mode, which poses an additional challenge for TEE devel-
opment. This configuration is explicitly recommended in the
RISC-V privileged ISA specification for embedded devices
[8]. Hex-Five MultiZone' is a proprietary TEE solution for
these types of devices, which is also built on an M-mode SM,
but the enclaves run solely in U-mode [9].

III. REAL-TIME THREAD ISOLATION ON RISC-V

A single-core 32-bit RISC-V machine with the U-mode ex-
tension and PMP hardware bears many functional similarities
to an ARMv8-M machine running solely in the non-secure
world. An RTOS can utilize the memory protection features on
either architecture by setting the bounds of accessible memory
to the top of the stack and bottom of the heap of the executing
thread on every context switch [10] (see Figure 1).

A. RTOS support for RISC-V

Despite the apparent ease of implementing PMP support
on an OS that already supports an Arm MPU, few embedded
operating systems currently do. The embedded operating sys-
tems listed below, with the exception of FreeRTOS, currently
support thread isolation with the ARMv8-M MPU in their
upstream repositories but not RISC-V PMP.

Operating | RV32[| RV64l | Real-
system support | support | time License
FreeRTOS? v X v MIT
Mynewt’ v X v Apache 2.0
NuttX* v X v BSD
Pharos’ X v v Apache 2.0
RIOT® v X v | LGPL 2.1
Zephyr’ v v v Apache 2.0

One area of our ongoing work is implementing PMP-
enforced userspace support to Zephyr, a real-time operating
system backed by The Linux Foundation. This RTOS supports
a handful of RISC-V platforms (e.g., SiFive HiFivel and
LiteX VexRiscv). However, all threads currently run in M-
mode alongside the kernel.

B. Porting from Arm to RISC-V

1) Privilege levels: Both ARMv8-M and embedded RV32I
have two privilege levels. Machines boot directly into the high-
est privilege level which has, by default, access to all registers,

Uhttps://hex-five.com/first-secure-iot-stack-riscv/
Zhttps://www.freertos.org/index.html
3http://mynewt.apache.org/

“https://nuttx.org/
Shttps://sourceforge.net/p/rtospharos/wiki/Home/
Shttps://www.riot-o0s.org/
Thttps://www.zephyrproject.org/

including those for configuring the memory protection rules.
Programs running in an unprivileged state often need to make
system calls that can only be handled in a privileged CPU
state (e.g., a thread jumping to the RTOS). This is done on
ARMVS-M by raising a special exception with the supervisor
call svc instruction [11]. On RISC-V, there is an equivalent
environment call ecall instruction [12].

U-mode [Thread 2][Thread 3][Thread 4]

M-mode [RTOS]

@ Thread 1 passes data to Thread 2 via queue.

U-mode Thread 1 Thread 3 Thread 4

M-mode

Thread 2

@ RTOS performs context switch and reconfigures PMP.

U-mode Thread 1 [Thread 3][Thread 4]

RTOS]

M-mode [

@ Thread 2 receives data from Thread 1 via queue.

Fig. 1. Overview of RTOS thread isolation on RV32I with PMP. (A red
border indicates the running program; a black fill indicates the address space
currently accessible to that program.)

2) Memory faults: When an illegal memory access occurs
in an unprivileged CPU state, a fault is triggered and handled
in privileged mode. On ARMvS8-M, this entails setting the
memory management fault address MMFAR register with the
location of the illegal access and the memory management
status MMF SR register to indicate whether the fault resulted
from an attempted load or store instruction, or an instruction
fetch. On RV32I, the machine trap value mtval register is set
to the address of the illegal memory access and the machine
cause mcause register is set to indicate whether the fault
resulted from an illegal load, store or instruction access.

3) Managing regions: The memory protection rules dictate
which portions of RAM, ROM and MMIO are readable,
writable and/or executable from unprivileged execution modes.
It is also possible to protect regions from privileged accesses
until the machine is reset. ARMv8-M supports eight MPU
regions; RV32I supports up to sixteen. Region management
is quite similar from the programmer’s perspective on either
architecture.

On ARMVvS-M, the permissions and size of a memory region
are declared with a write to the region number MPU_RNR

register, which selects a region to be configured on the subse-
quent writes to the base address MPU_RBAR and limit address
MPU_RLAR registers [13]. These latter writes determine the
permissions applied to the selected region.

On RV32I, four PMP configuration registers, pmpcfg0 to
pmpcfg3, declare the permissions and sizes of all sixteen
memory regions. These correspond to a set of PMP address
registers, pmpaddr0 to pmpaddrl5, which declare the
location of each region. PMP regions are prioritized, which
means the lowest-numbered PMP entry matching the address
of a memory access determines success. If the lock bit is set
in a pmpcfg« register, the permission settings are applied to
all privilege levels until system reset. PMP registers are only
accessible in M-mode.

IV. REAL-TIME ENCLAVES ON RISC-V

Our ultimate goal is a standard RISC-V compliant archi-
tecture that supports both thread isolation and trusted exe-
cution environments without sacrificing real-time scheduling
guarantees. This is currently possible on ARMv8-M TrustZone
platforms (see Figure 2). The worlds of TrustZone are orthog-
onal to the privilege levels enforced by the MPUs. A single
bit is added to every system memory transaction to indicate
whether it originated from a secure or non-secure CPU state,
and various SoC components may also be TrustZone-aware
simply by reading this bit.

Secure world Non-secure world

Threads

Unprivileged Services

Privileged

Fig. 2. Recommended TrustZone configuration for an RTOS running in the
non-secure world with threads requiring access to secure world APIs. Note
that direct transitions between any of the four processor states is possible
in ARMvV8-M. Context switching from secure world threads is handled by
the CMIS-RTOS v2 API extension [14], as the RTOS cannot directly access
secure world stack memory.

The recommended RISC-V configuration for secure embed-
ded systems, according to the privileged ISA specification,
has only two privilege levels. This is sufficient for thread
isolation (see Figure 1) or complete isolation of programs
with a security monitor (see Figure 3), but not both. The latter
approach places the RTOS in U-mode, which precludes the use
of PMP to protect and isolate thread memory.

A. Proposed solution

The solution we are currently developing requires minor
alterations to the RISC-V PMP specification. In order to
instantiate an arbitrary number of mutually isolated execution
environments with two privilege levels, a third privilege level
running a security monitor is required (see Figure 4). This
is, indeed, the approach employed by Keystone for TEEs on

Shared

Security Monitor]

M-mode

@ RTOS requests a new TEE from security monitor.

Shared
U-mode RTOS

M-mode

Security monitor

@ Security monitor instantiates TEE and performs context switch.

Shared
e (s D
M-mode [Security monitor]

@ TEE exchanges data with RTOS via shared buffer.

Fig. 3. Simple TEE architecture on the unmodified RISC-V ISA with only
two privilege levels. This approach precludes the use of PMP to isolate RTOS
threads, as depicted in Figure 1.

larger machines [7]. However, this approach cannot be directly
translated to constrained platforms because RISC-V’s S-mode
uses an MMU to isolate U-mode software.

It is uncommon to implement an MMU on highly con-
strained low-power chips due to energy and cost considera-
tions. There are no CPUs in the Arm Cortex-M lineup with
an MMU, for example. Some embedded operating systems,
Zephyr included, support MMU hardware, but only in thread
protected mode. This configuration applies an identity page
table. In other words, the MMU works as an MPU with un-
limited regions by disabling address translation. Underutilizing
hardware in this way is a usually poor design trade-off.

U-mode [Thread 1] [Thread 2] [Service 1] [Service 2]

—

S-mode [RTOS] TEE]

M-mode [Security monitor]

Fig. 4. Three privilege levels are required to achieve both RTOS thread
isolation and enclave separation. The latter can be achieved with existing
PMP functionality; the former is possible with our proposed addition to the
PMP specification.

We propose a relatively simple alteration to the current
PMP specification which would allow some PMP registers to

be configured in S-mode, and for their restrictions to apply
only to U-mode. This would be achieved with a simple flag
added to the pmpcfg= registers, as shown in Figure 5. This
modification would be sufficient to create a TEE framework
such as that shown in Figure 4.

31 0

pmp3cfg | pmp2cfg | pmplcfg| pmpOcfg

L [unused A X|W]|R

7 6 5 4 3 2 1 0

Fig. 5. The current specification of the pmpcfgx registers leaves two bits per
region unused. By re-purposing one of these bits as a flag to enable S-mode
configuration, our desired configuration would be achieved without adding
new registers to the ISA.

In order to maintain real-time scheduling behavior in the
proposed architecture, security monitor implementations must
perform context switches in a deterministic amount of time.
Since enclave memory bounds are modifiable only in M-mode,
all API calls from one enclave to another must be facilitated by
the security monitor. Direct API calls between enclaves would
require additional hardware modifications, so this is ultimately
a design trade-off. However, we argue that our approach is
justified as it maintains a simple programming model for
developers which will, in turn, minimize the prevalence of
software vulnerabilities.

We are in the process of implementing our PMP modi-
fication for the VexRiscv core® and LiteX SoC running on
an Arty A7 FPGA. We are currently developing our own
security monitor suitable for constrained platforms with real-
time requirements and an accompanying API for Zephyr RTOS
running as untrusted S-mode software.

B. Related proposals

At a recent RISC-V summit, a representative of Huawei
presented a modified PMP scheme for embedded security [15].
In this architecture, only M- and U-mode are implemented,
but an additional set of PMP registers accessible only to U-
mode has been added. This allows a U-mode program to block
M-mode access to its memory space, which offers protection
against an adversary in control of M-mode software. Our
trust assumptions differ from Huawei, as we consider M-
mode software to be trusted. Our modification to the PMP
specification would not require additional registers, and M-
mode would be allowed to override S-mode PMP settings.

SiFive’s recently-announced WorldGuard hardware exten-
sions promise to create TEEs on RISC-V chips with two priv-
ilege modes [16]. Based on the information currently available,
WorldGuard appears to require all untrusted software to run
in U-mode. This would preclude the use of PMP for thread
isolation (see Figure 3).

8https://github.com/SpinalHDL/VexRiscv

V. CONCLUSION AND FUTURE WORK

TEE framework development on RISC-V is an active re-
search area with a handful of competing proposals emerging
annually. We propose an architecture for low-power single-
core RISC-V TEEs requiring one simple modification to the
ISA, namely the addition of a single-bit flag in place of an
unused bit in the PMP configuration registers. This enables
simultaneous thread isolation and TEE separation on devices
with a flat address space (i.e., without an MMU). Our work
regarding implementation, performance evaluation and API
support for Zephyr RTOS is ongoing.

VI. ACKNOWLEDGEMENT

This research has been supported by the EU H2020 CON-
CORDIA project (grant agreement No 830927).

REFERENCES
(1]

K. Asanovié, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
Rocket Chip Generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html
[2] F. Kermarrec, S. Bourdeauducq, J.-C. Le Lann, and H. Badier, “LiteX:
an open-source SoC builder and library based on Migen Python DSL,”

w .

03 2019.
[3] V. Costan, I. Lebedev, and S. Devadas, “Secure Processors
Part I: Background, Taxonomy for Secure Enclaves and Intel

SGX Architecture,” Foundations and Trends® in Electronic Design

Automation, vol. 11, no. 1-2, pp. 1-248, 2017. [Online]. Available:

https://doi.org/10.1561/1000000051

, “Secure Processors Part II: Intel SGX Security Analysis and MIT
Sanctum Architecture,” Foundations and Trends® in Electronic Design
Automation, vol. 11, no. 3, pp. 249-361, 2017. [Online]. Available:
https://doi.org/10.1561/1000000052

[5]1 V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation,” in USENIX Security
Symposium, 2016.

[6] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-
R. Sadeghi, “TIMBER-V: Tag-Isolated Memory Bringing Fine-grained
Enclaves to RISC-V,” in NDSS, 2019.

[4]

[71 D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and
K. Asanovic, “Keystone: A Framework for Architecting
TEEs,” CoRR, vol. abs/1907.10119, 2019. [Online]. Available:

http://arxiv.org/abs/1907.10119
[8] A. Waterman and K. Asanovi¢, The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture, Document Version 20190608-Priv-
MSU-Ratified, RISC-V Foundation Std., June 2019.
[9] “MultiZone™ Security Secure IoT Stack Document Version Rev 1.0.2,”
Hex Five Security, Inc., Tech. Rep., September 2019.
J. Labrosse. (2018, Deember) Using the RISC-V PMP with an
Embedded RTOS to Achieve Process Separation and Isolation. Silicon
Labs, Inc. [Online]. Available: https://youtu.be/upkZZIdpljA
[11] ARMvS-M Architecture Reference Manual, Arm Limited, 110 Fulbourn
Road Cambridge, England CB1 9NIJ, June 2017.
A. Waterman and K. Asanovié¢, The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 20191213, RISC-V Foun-
dation Std., December 2019.
[13] ARMvS-M Memory Protection Unit, Arm Limited, 110 Fulbourn Road
Cambridge, England CB1 9NJ, February 2017.
RTOS design considerations Version 2.0, Arm Limited, 110 Fulbourn
Road Cambridge, England CB1 9NIJ, February 2017.
T. Kurd. (2019, December) Architectural Extensions for a RISC V
Processor for Embedded Security. Huawei Technologies Co., Ltd.
[Online]. Available: https://youtu.be/tiOs8DIkklk
B. Wheeler, “SiFive Secures RISC-V,” Tech. Rep., November 2019.

[10]

[12]

[14]

[15]

[16]

