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Abstract— An important selling point for the RISC-V instruc-
tion set is the separation between ISA and the implementation
of the ISA, leading to flexibility in the design. We argue
that for secure implementations, this flexibility is often a
vulnerability. With a hardware attacker, the side-effects of
instruction execution cannot be ignored. As a result, a strict
separation between the ISA interface and implementation is
undesirable. We suggest that secure ISA may require addi-
tional implementation constraints. As an example, we describe
an instruction-set for the development of power side-channel
resistant software.

Index Terms— RISC-V, ISA, embedded systems security, SCA
and countermeasures, domain-oriented masking

I. INTRODUCTION
In recent years, side-channel analysis (SCA) attacks have

gained significant notoriety in the field of computer security.
In power SCA [1], [2], the attacker extracts a secret en-
cryption key using only the power consumption of a device
running the cipher. In timing SCA, the attacker exploits
micro-architectural timing effects such as the last-level cache
(LLC) access [3]–[5], speculative execution [6], and out-of-
order execution [7] for the same purpose.

An important take-away from these side-channel attacks
on standard processor architectures is how these attacks
exploit resource implementation effects that are abstracted
away from the software programmer. Indeed, modern com-
puter architectures exceed at layering and abstraction, and
they hide the implementation details of hardware as much as
possible. There are strong motivations towards such layering,
such as the performance optimization, separation of the de-
sign concerns, and hiding of the design complexity. However,
it is now clear that this practice also creates many new
vulnerabilities. Therefore, one can argue that the root cause
of such vulnerabilities is the ambiguity in the architecture
specification. By only specifying an interface (such as the
ISA), the implementation leaves room for optimizations that
may result in security vulnerabilities. This is particularly
true for the secure processor implementation. While the
side-channel vulnerability of processor designs with respect
to power and timing is understood, we rarely see efforts
at design time to deal with the security implications of
implementation effects.

This observation also holds for RISC-V [8]. The RISC-V
Instruction Set Architecture (ISA) is prominently concerned
with the definition of instruction functionalities and instruc-
tion types, mapping these instructions into opcodes, and so
on. However, there is no discussion on how these instructions
should be implemented for (side-channel) security-sensitive
applications. On the other hand, since RISC-V is an open-
source architecture, it is a good platform for trying out secure

extensions to ultimately identify fitting secure extensions to
include in the ISA. Gonzalez et al. [9] replicate Spectre
attacks on the Berkeley Out-of-Order Machine (BOOM)
[10] and then propose mitigation techniques for this line of
attacks. Yu et al. [11] propose a data oblivious ISA extension
which protects against timing SCA attacks.

In this contribution, we present a power SCA resistant
ISA for RISC-V and discuss the important properties of the
design. Our objective is to show that constraints in the ISA
implementation can contribute to the practical side-channel
security.

II. RELATED WORK
In this section, we introduce preliminaries in side-channel

leakage mitigation and related work in the design of instruc-
tion sets resistant against SCA.

Masking is a well-known countermeasure against power
SCA. In this technique, the data is broken into uniformly
distributed shares and all the operations are adjusted to work
on the masked data. Masking breaks the relation between
the power consumption and the (unmasked) data. Masked
designs can only be broken using a side-channel attack that
recombines the side-channel leakage of multiple shares. In
higher-order masking, a single data item is split into more
than two shares; and there is consensus that the higher the
number of shares, the harder it is to exploit side-channel
leakage.

Masking [12] has been employed to protect software
against power SCA. Barthe et al. propose an algorithm for
nth-order masked implementations of multiplication provid-
ing security against power SCA of up to (n−1)th-order [13].
For AES, Rivain et al. propose provably-secure higher-order
masked algorithms [14]. However, later it was shown that
the leakage model for this design is based on assumptions
that are hard to achieve in practice. A careless implementer
of the Rivain algorithm can still end up with a leaky design
[15]. Therefore, even though in theory masking can be the
ultimate solution for secure software design, when it comes
to implementing these algorithms, the programmer must be
well-aware of the processor implementation details to avoid
unintentional leakage.

To alleviate the software designer’s part in effectively
applying masking to a program, Skiva [16] provides custom
instructions that support masking as well as bitslicing and
fault detection to provide a combination of countermeasures
which can be combined in a modular fashion. However, to
use Skiva, the program has to be bitsliced and the program-
mer should pay special attention in allocating registers for
their variables.



Another effort, by De Mulder et al. [17], applies Threshold
Implementation (TI) [18] to the complete hardware imple-
mentation of a RISC-V design. They show through Test
Vector Leakage Assessment (TVLA) technique [19] that their
implementation provides the expected (first-order) security.
Even though not discussed in the paper, the overhead of such
protections is high. As an example, Nikova et al. [20] show
that TI implementations of typical cryptographic functions
would require a much higher number of shares to guarantee
the required properties of TI.

Domain-Oriented Masking (DOM) [21] has shown to have
a lower area overhead compared to TI as well as a lower
need for randomness. To the best of our knowledge, DOM
has not been applied to a processor before. In this work, we
propose a DOM ISA for RISC-V which provides security
against first-order power SCA. Our approach is a hybrid
one in the sense that we do not apply DOM to the entire
processor implementation, as was done with TI [17]. Instead,
we propose an ISA extension which is masked and explain
the implementation details. By this example, we illustrate
how an ISA can adopt implementation constraints to provide
better security guarantees.

III. DOMAIN-ORIENTED MASKING

DOM is a masking technique that provides security against
power SCA in a hardware implementation. In DOM, like
other masking schemes, the variables are broken into shares.
The order of protection decides the number of shares the
variables are broken into. Here, we discuss the first-order
masking as it is the scheme we will apply to our ISA. The
original algorithm then should be adjusted to work on the
input shares and generate the output shares.

In first-order DOM, each variable is broken into two shares
such that the xor result of the shares retrieves the original
variable and the shares are uniformly distributed. There-
fore, to generate the shares, we first generate a uniformly
distributed random number, r, and generate the shares of
variable x as Ax = x ⊕ r and Bx = r. The exclusive or
result of Ax and Bx retrieves the variable x. Meanwhile,
since r comes from a uniform distribution, both shares are
uniform.

As collision of the shares results in unmasking (and hence
side-channel leakage), the main challenge of masking an
overall program is to avoid collisions. DOM handles this by
separating the shares as much as possible. For this purpose,
DOM assigns separate domains to shares; Ax belongs to
domain A and Bx to domain B. Throughout an algorithm,
share domains are kept completely separate. Only when ab-
solutely necessary to be combined, shares are first remasked
(refreshed) and only then they can be combined. In the
following section, we discuss how we apply this technique
to an ISA.

IV. DOM ISA FOR RISC-V
When adding secure (side-channel resistant) instructions

to an existing unprotected processor, care must be taken to
not let shares collide unintentionally and cause side-channel
leakage (power or EM). We apply the following two design
principles.
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Fig. 1. Separating the datapath for protected instructions from the
unprotected datapath.

1) Keeping the secure and the unprotected parts of the
processor implementation separate from each other.

2) Protecting the secure part efficiently.
We address these two steps in the following subsections.

A. Separating protected execution from unprotected execu-
tion

Typical modern processor designs contain lots of redun-
dant execution. For example, even operations that are not
meant to be executed by an opcode are executed, and
only at the end of the execute stage, the results of these
operations are discarded (by not being stored). Since these
processors are implemented in Complementary Metal–Oxide
Semiconductor (CMOS) technology, any logic operation on
the chip contributes to the power consumption. When it
comes to power SCA, we need strict control over the flow
of information, including the flow of secret shares. For
instance, it has been shown how the rotation instruction on
a share-sliced design can cause unwanted leakage [22]. If
the circuitry for the rotation instruction is available in the
unprotected datapath, and the data is share-sliced, without
the means of disabling the unprotected pipeline, the power
consumption of this calculation will be present and will
contribute to the power leakage correlated with the secret
data even if the result of this instruction is not committed.

To implement a secure instruction set, we propose that a
separate protected datapath is created in the processor ex-
clusively to support those secure instructions. The protected
datapath co-exists with the normal datapath, but is strictly
separate from it, as shown in Figure 1. The instruction under
execution should be evaluated to activate either the secure
or the unprotected pipeline, therefore, the designer needs
to build a circuit following the decode stage to determine
whether the decoded instruction is a secure one or not. Based
on the output of this circuit, either the secure pipeline or the
normal pipeline is activated. In Figure 1, a comparison circuit
is added in the execute stage (coming right after the decode
stage) that disables/enables the corresponding parts of the
datapath.

B. Protecting the secure instructions
In this work, we implement a small but universal set of

instructions. We build a protected ALU to support them.
We protect the instructions using the DOM technique. In
this work we focus only on the ALU part of the CPU
and assume all the other parts are already protected; the
register file is duplicated such that a separate register file is



used for each share domain, registers in the secure datapath
which contain instruction operands are duplicated the same
as the register file, and all the load and store operands
are refreshed to avoid accidental leakage through memory
accesses. Additionally, for systems with data-cache support,
the caches are separate for each share domain.

DOM works on the concept of share domains; each
variable is divided into shares and the goal is to keep the
shares of each domain separate from and independent of
one another. In this work, we operate on two domains, i.e.
domain A and domain B. Therefore, each variable is broken
into two shares to be protected against first-order power
SCA according to the d-probing model [23]. Operations are
divided into two categories; linear and non-linear. Linear
operations preserve the uniformity of their inputs for their
outputs, which is not the case for non-linear operations. As
is mentioned by Nikova et al. [18], in linear operations,
each share of the output only depends on one share of each
input, therefore, in DOM implementation, there is no need
for special attention as the separation is naturally provided.
This is not the case for non-linear operations and special
steps should be taken for their DOM implementation. We
use the DOM-dep concept (viz. [21]) in which the inputs of
an operation are not required to be independent of each other.
Throughout this section, we show the shares belonging to the
domain A in blue, domain B in red, and neutral variables in
green. The universal set of instructions that we choose are
enumerated in the following.

a) NOT: As a linear instruction, q =∼ x is imple-
mented as below and executed in one clock cycle:

Aq =∼ Ax, Bq = Bx

b) XOR: As another linear operation, q = x ⊕ y is
implemented as follows and executed in one clock cycle:

Aq = Ax ⊕Ay, Bq = Bx ⊕By.

c) AND: AND is a non-linear operation. The DOM-dep
implementation of q = x · y is:

Aq = Ax ·Ay ⊕Ax · (By ⊕ Z0)⊕Ax · Z0 ⊕ Z1,

Bq = Bx ·By ⊕Bx · (Ay ⊕ Z0)⊕Bx · Z0 ⊕ Z1;

where Z0 and Z1 are random bits (to see the justification
of these algorithms refer to [21]). To avoid unintentional
leakage through glitches, we need to insert registers in the
middle of the calculation of these algorithms; this ensures
the correct sequence of the operations (remasking first and
calculating across domains next). In the realm of processor
instructions, this results in a two-cycle instruction:

instruction x · y
domain A B

cycle 1
(Z0 req’d)

At1 = Ax ·Ay

At2 = By ⊕ Z0

At3 = Ax · Z0

Bt1 = Bx ·By

Bt2 = Ay ⊕ Z0

Bt3 = Bx · Z0

cycle 2
(Z1 req’d) Aq = At1 ⊕Ax ·At2 ⊕At3 ⊕ Z1 Bq = Bt1 ⊕Bx ·Bt2 ⊕Bt3 ⊕ Z1

d) OR: We derive the DOM-dep implementation of OR
in terms of XOR and AND as mentioned above, q = x+y =
(x⊕ y)⊕ (x · y), which results to:
Aq = Ax ⊕Ay ⊕Ax ·Ay ⊕Ax · (By ⊕Z0)⊕Ax ·Z0 ⊕Z1,

Bq = Bx ⊕By ⊕Bx ·By ⊕Bx · (Ay ⊕Z0)⊕Bx ·Z0 ⊕Z1;

where Z0 and Z1 are random bits. Similar to AND, OR also
takes two cycles to execute:

instruction x+ y
domain A B

cycle 1
(Z0 req’d)

At1 = Ax ·Ay

At2 = By ⊕ Z0

At3 = Ax · Z0

Bt1 = Bx ·By

Bt2 = Ay ⊕ Z0

Bt3 = Bx · Z0

cycle 2
(Z1 req’d) Aq = Ax ⊕Ay ⊕At1 ⊕Ax ·At2 ⊕At3 ⊕ Z1 Bq = Bx ⊕By ⊕Bt1 ⊕Bx ·Bt2 ⊕Bt3 ⊕ Z1

e) ADD: From the implementation of AND and OR, we
can conclude that the number of cycles for the execution of
an instruction depends on the multiplicative complexity [24]
of the instruction. Following the implementation of a Carry
Look-Ahead Adder with inputs X , Y , and C (carry) where
the concepts of carry propagate (P ) and carry generate (G)
are Pi = Xi ⊕ Yi, and Gi = Xi · Yi, and the sum (S) and
carry-out (C) are calculated as Si = Pi ⊕ Ci and Ci+1 =
Gi + Pi · Ci, we find that the multiplicative complexity for
the carry-out of an n-bit adder is 2n, therefore, taking 4n
clock cycles to run. Hence, using secure ADD instructions
causes significant drops in the performance.

The alternative would be for the software programmer
to make a binary (Boolean) implementation of the entire
program, avoiding the usage of any ADD instruction. This
will not necessarily have a better performance than using an
ADD instruction and it should be decided for each application
separately.

Bitslicing [25] is a type of programming common in secure
software design where all the data in the program running
on a w-bit wide architecture are transposed into w 1-bit
values. For this type of programming, it could be helpful to
have an instruction for a 1-bit adder (taking 4 clock cycles
to run). The two shares of the carry-out can be stored in
two special registers in the processor dedicated to the carry-
outs of the ADD instruction. Hence, implementing ADD
instruction requires two special registers, Ac and Bc, to be
added to the processor. The ADD instruction then reads the
contents of these registers as the carry-in at the first cycle
of its execution and updates it with the result of carry-out
at its last execution cycle. In this project, we opt for a 1-bit
ADD instruction to calculate the sum (S) and carry-out (Co)
as S = x⊕ y ⊕ ci and Co = (x⊕ y) · ci + x · y. The DOM
implementation of S calculates

AS = Ax ⊕Ay ⊕Aci , BS = Bx ⊕By ⊕Bci ;

both of which can be calculated in the same clock cycle. To
show the DOM implementation of Co, we define z = x⊕ y,
a = z · ci, and b = x · y. Therefore, we have Co = a+ b and
the DOM implementation of Co calculates

Aa = (Ax⊕Ay)·Aci⊕(Ax⊕Ay)·(Bci⊕Z0)⊕(Ax⊕Ay)·Z0⊕Z1,

Ba = (Bx⊕By)·Bci⊕(Bx⊕By)·(Aci⊕Z0)⊕(Bx⊕By)·Z0⊕Z1,

Ab = Ax ·Ay ⊕Ax · (By ⊕ Z2)⊕Ax · Z2 ⊕ Z3,

Bb = Bx ·By ⊕Bx · (Ay ⊕ Z2)⊕Bx · Z2 ⊕ Z3,

ACo = Aa⊕Ab⊕Aa ·Ab⊕Aa · (Bb⊕Z4)⊕Aa ·Z4⊕Z5,

BCo
= Ba⊕Bb⊕Ba ·Bb⊕Ba · (Ab⊕Z4)⊕Ba ·Z4⊕Z5.

The correct execution sequence of these operations is there-
fore as shown below:

instruction (x⊕ y) · ci + x · y
domain A B

cycle 1
(Z0, Z2 req’d)

At1 = Ax ⊕Ay

At2 = Bci ⊕ Z0

At3 = (Ax ⊕Ay) · Z0

At4 = By ⊕ Z2

At5 = Ax · Z2

Bt1 = Bx ⊕By

Bt2 = Aci ⊕ Z0

Bt3 = (Bx ⊕By) · Z0

Bt4 = Ay ⊕ Z2

Bt5 = Bx · Z2

cycle 2
(Z1, Z3 req’d)

Aa = At1 ·Aci ⊕At1 ·At2 ⊕At3 ⊕ Z1

Ab = Ax ·Ay ⊕Ax ·At4 ⊕At5 ⊕ Z3

Ba = Bt1 ·Bci ⊕Bt1 ·Bt2 ⊕Bt3 ⊕ Z1

Bb = Bx ·By ⊕Bx ·Bt4 ⊕Bt5 ⊕ Z3

cycle 3
(Z4 req’d)

At6 = Bb ⊕ Z4

At7 = Aa · Z4

Bt6 = Ab ⊕ Z4

Bt7 = Ba · Z4

cycle 4
(Z5 req’d) ACo = Aa ⊕Ab ⊕Aa ·Ab ⊕Aa ·At6 ⊕At7 ⊕ Z5 BCo = Ba ⊕Bb ⊕Ba ·Bb ⊕Ba ·Bt6 ⊕Bt7 ⊕ Z5



Mapping to opcodes: All the presented instructions are
of register-register type (R-type). To be compatible with
the current and future states of RISC-V, we map these
instructions to the custom-0 opcode field (0001011) which
will be avoided by the future standard extensions of the
32-bit format. Furthermore, separating the opcode of our
secure extension from other instructions will make the secure
comparator shown in Figure 1 simpler.

Recap: In this work, we studied the design principles for
our ISA thwarting power based SCA. The proposed small
ISA extension, as an example to show how ISAs can be
extended to contain implementation details and requirements.
For this case, where the attack model is power-based SCA,
DOM ISA specifies the following:

1) constraints on the flow of information in the system,
2) break-down of operations into sub-operations with

constraints on their execution order,
3) constraints on the required number of random bits in

each execution clock cycle.

Following the proposed ISA, the designers know the security
requirements in implementation; they know implementing
this ISA requires the register file to be duplicated, they also
know they require a random number generator with the rate
of two random bits per clock cycle (for the ADD instruction).
This way, the gap between the ISA definition and its physical
implementation is reduced.

V. FUTURE WORK AND CONCLUSION

We discussed how the current myriad of SCA attacks are
caused in part by the ambiguity of the processors’ design and
how it can be beneficial to include secure design details in
the ISA of processors to avoid SCA attacks after implemen-
tation. To give an example, we proposed an Instruction Set
Extension for RISC-V which uses Domain-Oriented Masking
to provide security against first-order power SCA. Our ISE
contains implementation considerations that can bring closer
the ISA and implementation of RISC-V.

This ISA is still in its early definition stages. In our future
efforts, we plan to implement and evaluate this ISA extension
for both area overhead and security claims and give concrete
comparison with the related work.

This work was supported in part by NIST Grant
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